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Abstract

In recent years, depth cameras have become a widely

available sensor type that captures depth images at real-

time frame rates. Even though recent approaches have

shown that 3D pose estimation from monocular 2.5D depth

images has become feasible, there are still challenging

problems due to strong noise in the depth data and self-

occlusions in the motions being captured. In this paper, we

present an efficient and robust pose estimation framework

for tracking full-body motions from a single depth image

stream. Following a data-driven hybrid strategy that com-

bines local optimization with global retrieval techniques,

we contribute several technical improvements that lead to

speed-ups of an order of magnitude compared to previous

approaches. In particular, we introduce a variant of Dijk-

stra’s algorithm to efficiently extract pose features from the

depth data and describe a novel late-fusion scheme based

on an efficiently computable sparse Hausdorff distance to

combine local and global pose estimates. Our experiments

show that the combination of these techniques facilitates

real-time tracking with stable results even for fast and com-

plex motions, making it applicable to a wide range of inter-

active scenarios.

1. Introduction

In recent years, several approaches for marker-less hu-

man pose estimation from multiple video streams have been

presented [2, 4, 7, 9]. While multi-view tracking already

requires solving challenging non-linear optimization prob-

lems, monocular pose estimation puts current technology

to its limits since, with intensity images alone, the problem

is considerably underconstrained, see e.g. [16, 21]. Here,

non-trivial inference or optimization steps are needed in

combination with strong priors in order to have a chance

to reconstruct human movements. In general, real-time re-

construction of complex human motions from monocular

intensity image sequences can still be considered an open

problem. New depth sensors such as time-of-flight (ToF)

cameras capture 2.5D scene geometry [14] at video frame

rates. Therefore, they promise to deliver data that permits

more reliable 3D pose reconstruction from a single view-

point. Some previous papers have already shown that based

on ToF data, reconstruction of even complex poses comes

into range at interactive frame rates [3, 8, 10, 13, 19, 30]. In

this paper, we contribute to this area of research by present-

ing a tracking framework that not only yields more robust

pose estimates from monocular depth image sequences but

also enables significant speed-ups of an order of magnitude

compared to previous approaches.

Our procedure follows a hybrid strategy combining gen-

erative and discriminative methods, which is an established

paradigm for pose estimation and tracking problems. While

local optimization strategies have proven to yield high

frame rates, see e.g. [13], fast motions and noisy data lead

to tracking errors that are hard to recover from. Algorithms

using global optimization could prevent this, but are typi-

cally slow and prohibitive for real-time scenarios. Various

data-driven approaches have also been suggested to over-

come some of these issues, enabling fast yet robust tracking

from intensity image streams, see [18, 22, 26, 29]. These

approaches, however, fail on poses that are not contained

in the database and thus rely on a dense sampling of the

pose space to reconstruct. Hybrid strategies that combine

generative and discriminative methods have proven to be a

suitable methodology for pose estimation and tracking pro-

cedures, see e.g. [1, 6, 10, 23, 25, 28]. In these works, the

main idea is to stabilize generative optimization algorithms

by a discriminative component which is implemented as a

database lookup or a classification scheme. Using this strat-

egy, the risk of getting stuck in local minima is significantly

reduced, while time-demanding global optimization meth-

ods are avoided.

In our approach, we employ a data-driven hybrid strat-

egy conceptually similar to [6], where local optimization

is combined with global retrieval techniques, see Fig. 1 for

an overview. In our scenario, an actor may perform even

complex and fast motions in a natural environment facing a
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Figure 1. Overview of our proposed pose estimation framework.

single depth camera at a reasonable distance. Similar to [6],

we retrieve pose hypotheses from a large database of 3D

poses using sparse features extracted from the input data.

Additionally, a further hypothesis is generated based on the

previously tracked frame. After a local optimization of both

hypotheses, a late-fusion voting approach combines the hy-

potheses to yield the final pose. While the overall proce-

dure follows previous work [6, 10], we introduce a num-

ber of novel techniques to add robustness and significantly

speed up computations at various stages including efficient

feature computation, efficient database lookup, and efficient

hypothesis voting. In our experiments, we also compare

with previous work using the publicly available benchmark

data set [10]. We gain significant improvements in accuracy

and robustness (even for noisy ToF data and fast motions)

while achieving frame rates of up to 100 fps (opposed to

4 fps reported in [10]).

Contributions. In this paper, we present a system for full-

body pose estimation from monocular depth images that

requires only 10 to 16 ms per frame on a standard single-

core desktop PC, while being able to track even fast and

complex full-body motions. Following a data-driven hybrid

strategy that combines local pose estimation with global re-

trieval techniques, we introduce several technical improve-

ments. Firstly, in the feature extraction step, we introduce

a variant of Dijkstra’s algorithm that allows for efficiently

computing a large number of geodesic extrema. Secondly,

in the retrieval step, we employ an efficient database lookup

scheme where semantic labels of the extrema are not re-

quired. Thirdly, we describe a novel late-fusion scheme

based on an efficiently computable sparse Hausdorff dis-

tance. It is the combination of all these techniques that

avoids computational bottlenecks while still providing ro-

bust tracking results.

The remainder of this paper is organized as follows. In

Sect. 2, we describe the input data and preprocessing steps.

We define the parts of the pose reconstruction framework in

Sect. 3 and describe our extensive experiments in Sect. 4,

before we conclude in Sect. 5. Further related work is dis-

cussed in the respective sections.

2. Acquisition and Data Preparation

Depth data. A ToF camera captures depth/distance data

at video frame rates by measuring the round trip time of in-

frared light emitted into and reflected from the scene [14].

Opposed to stereo systems, current ToF cameras are robust

to background illumination and yield stable distance values

independent of the observed textures. Unfortunately, they

have challenging data characteristics, exhibiting low reso-

lution, strong random noise and a systematic bias [14]. In

particular, dynamic scenes with fast motions lead to strong

artifacts in the depth measurements such as so-called flying

mixed pixels at occlusion boundaries.

The camera returns a distance image I ≔ Z2 → R. with

Z
2 being the pixel domain. We transform the per-pixel dis-

tances into a metric 3D point cloudMI ⊆ R
3 for every in-

put frame. We then perform background subtraction using

a static prerecorded background model and delete contour

pixels to remove the influence of mixed pixels. Then, a 3×3

median filter is used to reduce noise in the measurements.

Model of the actor. The motion of the actor is modeled

as a kinematic chain [17]. It contains a set of J = 20 joints

that are connected by rigid bones. We define one distin-

guished joint as the root of the kinematic chain. A pose is

fully determined by the configuration of a kinematic chain

specified by a pose χ containing the position and orientation

of the root joint as well as a set of joint angles. Through

forward kinematics [17] using χ, joint positions Pχ ∈ R
3×J

can be computed. Using linear blend skinning [15], we at-

tach a surface mesh with a set of 1170 verticesMχ ⊆ R
3 to

the kinematic chain to model the deforming body geometry.

Initializing the body model to the shape of a specific actor

is beyond the scope of this paper. Methods exist to solve

this task using a large database of scanned humans, see e.g.

[11, 12]. As shown in the experiments (Sect. 4), even with



a fixed body model we can track people for a range of dif-

ferent body sizes.

Pose database. In the proposed algorithm, we use a pose

database to overcome limitations of local optimization. To

create the pose database, we record human motions using a

commercial marker-based motion capture system. The ac-

tor performs a variety of motions typical for our scenario

including hand gestures and foot motions, etc., to span a

large range of different poses. The obtained poses χi are

then normalized according to the positions of the root joint

and the viewing direction to enable invariance under global

transformations. To maximize the variety and minimize the

number of poses in the database, we select a subset of the

recorded poses using a greedy sampling algorithm [29]. To

this end, the distance of two poses χ1 and χ2 is measured by

the average Euclidean distance of the corresponding joint

positions dP(χ1, χ2) ≔ 1/J · ||Pχ1
− Pχ2

||2. In contrast to

[29], we truncate the sampling as soon as a the minimal dis-

tance between all pairs of selected poses reaches a certain

threshold. Using the truncated sampling, we obtain roughly

25, 000 poses in which any two selected poses have a pose

distance dP larger than 1.8 cm.

For each selected pose, we then consider end effector po-

sitions of the left/right hand, the left/right foot, and the head,

modeled as E5
χ ≔ (e1

χ, . . . , e
5
χ) ∈ (Mχ)

5. The following three

reasons motivate the usage of these features. Firstly, end ef-

fector positions can be efficiently estimated for a large set

of different poses even from ToF data alone, see Sect 3.2.

Secondly, for many poses these positions are characteris-

tic, thus yielding a suitable representation for cutting down

the search space. Thirdly, they lead to low-dimensional fea-

ture vectors which facilitates the usage of efficient indexing

methods. In conclusion, end effector positions constitute

a suitable mid-level representation for full-body poses that

on the one hand abstract away most of the details of the

noisy input data, yet on the other hand retain discrimina-

tive power needed in the pose estimation. For indexing, we

use a kd-tree [5] on the 15-dimensional stacked vectors E5
χ.

Since skeleton size (e.g. body height or arm span) varies

with different actors, the pose database has to be adapted

to the actor. While not implemented in the presented sys-

tem, this task can be solved using a retargeting framework.

Even without retargeting, by manipulatingMI we are able

to track motions of people if body proportions are not too

far off the database skeleton, see Sect. 4.

Normalization. To cope with global rotations, one could

augment the database to contain pose representations from

several viewing directions [6, 26, 29]. In this case, the re-

trieval time and also the risk of obtaining false poses would

increase. Instead, in our framework, we normalize the point

cloud according to an estimated viewing direction. To this

end, we compute a least-squares plane fit to the points corre-

sponding to the torso, which we assume to lie within within

a sphere of 0.15 m radius around the center of MI . The

normal of the plane corresponds to the Eigenvector with the

smallest Eigenvalue of the covariance matrix of the points.

The viewing direction is its projection onto the horizontal

plane. To cope with frames in which the direction cannot

be estimated because, e.g., the torso is occluded, we use

exponential smoothing over time with an adaptive smooth-

ing factor. Body parts that occlude the torso lead to a less

planar plane fit (smallest Eigenvalue is relatively large) or

a less circular fit (largest Eigenvalues are not similar). The

smoothing factor minimizes the influence of normals corre-

sponding to a less planar or circular fit. As a consequence,

the estimation remains stable even if the arms occlude the

torso or the center ofMI does not correspond to the torso.

3. Pose Reconstruction Framework

In the offline preprocessing phase of the framework, the

camera matrix is obtained and the background model is cre-

ated. Hereafter, our proposed online framework is described

which can be divided into five main components, see also

Fig. 1. As explained in the previous section, at a given frame

t, the first steps are to compute the point cloudMI from the

distance image I, to perform background subtraction, to fil-

ter and to normalize according to the viewing direction. Let

χ∗
t−1

be the final pose estimate of the previous frame t−1.

From χ∗
t−1

, we obtain a pose hypothesis χ
LocOpt
t by refining

χ∗
t−1

with the input data using local optimization (Sect. 3.1).

A second pose hypothesis is obtained as follows. We ex-

tract a 15-dimensional feature vector from MI , represent-

ing the 3D coordinates of the first five geodesic extrema

(Sect. 3.2). Being a low-dimensional yet characteristic pose

representation, the features allow for rapid retrieval of simi-

lar full-body poses from a large pose database (Sect. 3.3).

From the set of retrieved poses we choose a single pose

hypothesis χDB
t using a distance function that is regular-

ized by χ∗
t−1

. Based on a voting scheme that combines two

sparse Hausdorff distances, our algorithm decides between

χDB
t and χ

LocOpt
t to find the final pose χ∗t , see Sect. 3.4.

3.1. Local Optimization

In our local pose optimization, we follow a standard pro-

cedure as described in e.g. [24]. Here, the goal is to mod-

ify an initial pose χ such that the modified pose χ′ fits to

the point cloud MI more accurately. To this end, we seek

correspondences between vertices inMχ and points inMI .

Finding correspondences for all v ∈ Mχ is not meaning-

ful for three reasons. Firstly, many vertices do not have

semantically meaningful correspondences in MI , e.g. the

back vertices. Secondly, the number of correspondences for

the torso would be much higher than the number of corre-

spondences in the limbs, disregarding the importance of the

limbs for pose estimation. Thirdly, the computation time



Figure 2. From pose χ (left), correspondences for mesh vertices

in Cχ are estimated (middle). Local optimization using the corre-

spondences yields an updated pose χ′ (right).

of local optimization increases with the number of corre-

spondences. To overcome these shortcomings, we use a

predefined set Cχ ⊆ Mχ of mesh vertices (each body part

should be assigned some correspondences) and find corre-

spondences inMI for all v ∈ Cχ (Fig. 2). Using these corre-

spondences in an optimization framework similar to the one

in [24], we obtain updated pose parameters χ′.

3.2. Feature Computation

To obtain a sparse yet expressive feature representation

of the input point cloud MI , we revert to the concept of

geodesic extrema as introduced in [20]. Such extrema often

correspond to end effector positions, yielding characteristic

features of many poses, see Fig. 4. Following [20], we now

summarize how to obtains such features. Then, we intro-

duce a novel variant of Dijkstra’s algorithm that allows for

efficiently computing a large number of geodesic extrema.

We model the tuple of the first n geodesic extreme points

as En
I
≔ (e1

I
, . . . , en

I
) ∈ (MI)

n. To compute En
I
, the point

cloud data is modeled as a weighted graph where each point

inMI represents a node in the graph. To efficiently build up

the edge structure, we exploit the neighborhood structure in

the pixel domain Z2 of the underlying distance image as fol-

lows. For all neighbors q in the 8-neighborhood of p ∈ MI ,

we add an edge between p and q of weight wpq ≔ ||p − q||2
if wpq is less than a distance threshold τ and q ∈ MI . In

our approach, in contrast to the method in [20], we need to

ensure that the obtained graph does not separate into more

than one connected component. In practice, however, the

obtained graph is not fully connected due to sensor noise

and occlusions (e.g. Fig. 4 (c) and (d)). Using an efficient

union-find algorithm [27], we compute the connected com-

ponents and discard all components that occupy a low num-

ber of nodes. The connected component with the largest

number of nodes is assumed to be the torso. Finally, all re-

maining components are connected to the torso by adding

an edge between the respective closest pair of pixels.

We now show how a large number of extrema can be

computed efficiently. To find the first geodesic extreme

point e1
I
∈ MI , we run Dijkstra’s algorithm [5] with the
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Figure 3. (a) Number of nodes visited and (b) running time in

milliseconds to find the nth geodesic extreme point for (black) the

unoptimized and (green) our optimized algorithm. Average values

and standard deviation bars for a sequence of 400 frames from the

data set of [10] are reported.

centroid point p̄ ∈ MI as source. The first pass of Dijkstra

stores the shortest geodesic distances from the source to any

other node in the graph in an array ∆ of distances having

|MI | entries. After the first pass of Dijkstra, the node with

the largest distance in ∆ is taken as the first geodesic ex-

treme point e1
I
. According to [20], the next step is to add

a zero-cost edge between p̄ and e1
I

and then to restart Dijk-

stra’s algorithm to find e2
I
, and so on. This leads to a run-

ning time of O(n ·D) for n extrema with D being the running

time of Dijkstra’s algorithm for the full graph. Note, how-

ever, that the second run of Dijkstra’s algorithm shows a

high amount of redundancy: the entries in the array ∆ cor-

responding to all nodes in the graph that are geodesically

closer to p̄ than to e1
I

do not change. Therefore, to compute

the 2nd pass, we keep the distance values of the 1st pass and

set e1
I

as the new source. The value in ∆ corresponding to

the new source is set to 0 and Dijkstra’s algorithm is started.

Then, we pick e2
I

as the point with the maximal distance in

the updated ∆. For the 3rd pass we set e2
I

as the new source,

set the value in ∆ corresponding to the new source to 0, and

run Dijkstra. This way, in the 3rd pass, only nodes in the

graph that are nearer to e2
I

than to all other previously used

source nodes are touched, leading to drastic improvements

in running time for each pass, see Fig. 3. We proceed itera-

tively to compute the subsequent extreme points.

Using this computational scheme, end effector positions

are detected efficiently even in difficult scenarios where e.g.

a foot is bent to the back or where a hand occludes parts

of the body (Fig. 4 (b)), or the arms are outstretched to the

camera (Fig. 4 (c)). In poses where the end effectors are

very near to other parts of the body, the topology of the

graph may change and the detected extrema may not cor-

respond to the set of end effectors any longer (Fig. 4 (e)

and (f), right knee and left elbow are selected as e5
I
, respec-

tively). Note, however, that by means of following a com-

bined generative and discriminative approach our frame-

work can circumvent the influence of false detections.

3.3. Database Lookup

In this section, we show how to employ an efficient

lookup scheme that does not need a priori semantic labels

of the extracted geodesic extrema. The goal is to iden-
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Figure 4. Example poses with the first five geodesic extrema drawn

as big spheres, and extrema 6 to 20 drawn as smaller blobs.

tify a suitable full-body pose χDB
t in our pose database by

searching the kd-tree of the database using the recovered

geodesic extrema E5
I

as the query input. However, opposed

to the database motions where the semantics of the end ef-

fector positions are known, the semantic labels of the ex-

trema on the query side are not known. To partially solve

for missing semantics, the method of [10] uses a classifier

trained on ‘hand’, ‘head’, and ‘foot’ patches of distance im-

ages. This process, however, is relatively expensive for a

real-time scenario (60 ms per frame according to [20]). In

our approach, we circumvent the classification problem by

searching the database for a number of permutations of E5
I
.

More precisely, let S5 be the symmetric group of all five-

permutations and let S ⊆ S5 be a subset containing permu-

tations σ such that the positions in σE5
I

are close to the end

effectors of the previous frame χ∗
t−1

, i.e.

S ≔ {σ ∈ S5|∀n ∈ [1 :5] : ||e
σ(n)

I
− en
χ∗

t−1
|| < µ}. (1)

We fix a conservative distance threshold µ = 0.5 meters to

effectively and conservatively prune the search space while

still allowing for large jumps in the end effector positions

which may be present in fast motions. To further intro-

duce robustness to a possible false estimation in the previ-

ous frame, we augment S if we detect jumps in the positions

of the geodesic extrema. The additional permutations are

chosen by the weak assumption that the lowest extrema cor-

respond to the feet. In frames with clear geodesic extrema,

the number of considered permutations typically drops to

one.

By querying the kd-tree of the pose database for K near-

est neighbors for each permutation in S, we obtain K · |S|

pose candidates χk,σ with k ∈ [1 : K], σ ∈ S, and associated

distance values to the database defined through the average

end effector distances of the corresponding stacked vectors

δ(χk,σ, E
5
I ) ≔ 1/5 · ||Eχk,σ

− σE5
I ||2. (2)

The result of the database lookup χk∗,σ∗ for frame t is then

chosen by integrating temporal consistency using

(k∗, σ∗) = argmin
(k,σ)

λ · δ(χk,s, E
5
I ) + (1 − λ) · dP(χk,s, χ

∗
t−1) (3)

with a weighting factor λ. We fix λ = 0.5 such that temporal

continuity in the full-body poses is preserved, while still

allowing to recover from possible false pose estimates of the

previous frame. Finally, we refine χk∗,s∗ to the hypothesis

χDB
t using local optimization (Sect. 3.1).

3.4. Hypothesis Voting

At this stage, two alternative pose hypotheses have been

derived, i.e. χ
LocOpt
t from a generative component, and χDB

t

from a discriminative approach. For the fusion of both, we

propose a novel voting scheme based on an efficiently com-

putable sparse Hausdorff distance. By fusing the hypothe-

ses, the local optimization and database lookup schemes

benefit from each other. On the one hand, local optimiza-

tion can loose track, and the database lookup can reinitial-

ize the tracking. On the other hand, the database lookup

can fail, in particular if the end effectors are not revealed.

Then, local optimization continues to track the motion. We

use distances that revert to the original input point cloudMI

rather than to derived data in order to avoid a dominant in-

fluence of potential errors in the feature extraction or in the

database lookup.

One possible distance measure could be defined by ren-

deringMχ into a distance image and comparing it to I. In

practice, however, because of the relatively low number of

pixels in the limbs, such a distance measure is dominated

by the torso. For this reason, we propose a novel distance

metric that can be computed efficiently and accounts for the

importance of the limbs for pose estimation. To this end, we

combine two sparse Hausdorff distances. The first distance

expresses how well the mesh is explained by the input data:

dMχ→MI
≔

1

|Cχ|

∑

v∈Cχ

min
p∈MI

||p − v||2. (4)

Likewise, the second distance measures how wellMI is ex-

plained byMχ:

dMI→Mχ ≔
1

20

∑

n∈[1:20]

min
v∈Mχ
||en

I − v||2. (5)

Here, to emphasize the importance of the limbs, we take

the first 20 geodesic extrema of the input depth data, which

largely correspond to points on the limbs rather than the

torso, see Fig. 4. In practice, 20 to 50 geodesic ex-

trema yield similarly stable results. Both distance measures

can be computed efficiently for two reasons. Firstly, we

showed that geodesic extrema can be extracted very effi-

ciently (Sect.3.2). Secondly, the small number of points

leads to a low overall computation time for both distance

measures. Since we choose only a subset of points in the

distance measure, the distances are sparse. By means of the

specific choice of the points, the distances capture the im-

portant parts of the pose. The final pose χ∗t is then given

through

χ∗t ≔ argmin

χ∈
{

χDB
t , χ

LocOpt
t

}

(dMχ→MI
+ dMI→Mχ ). (6)



4. Experiments

We implemented the proposed hybrid strategy in C++

and ran our experiments on a standard off-the-shelf desk-

top PC with a 2.6 GHz CPU. To numerically evaluate and to

compare our hybrid strategy with previous work, we use the

publicly available benchmark data set of [10]. In this data

set, 28 sequences of ToF data (obtained from a Mesa Imag-

ing SwissRanger SR 4000 ToF camera) aligned with ground

truth marker positions obtained from a marker-based mo-

tion capture system are provided, comprising 7900 frames

in total. In addition to numerically evaluating on this data

set, we demonstrate the effectiveness of the proposed algo-

rithm in a real-time scenario with fast and complex motions

captured from a PMD Camcube 2 in a natural and uncon-

strained environment, see Fig. 6, 7. In the accompanying

video, we show that the same framework also seamlessly

works with the Microsoft Kinect depth sensor.

Feature extraction. First, we evaluate the effectiveness

of the proposed feature extractor on the benchmark data set.

Not all ground truth markers in all frames are visible, thus,

for this evaluation, we use only the 3992 frames in which

all five end effector markers are visible. A good recognition

performance of the feature extractor is needed for a suc-

cessful subsequent database lookup. In 86.1% of the 3992

frames, each of the found 5 geodesic extrema E5
I

is less than

0.2 meters away from its corresponding ground truth marker

position. This shows that we can effectively detect the end

effector positions for most motions contained in the test data

set.

Quantitative evaluation. We run our pose reconstruction

algorithm on the benchmark data set. Since the surface

mesh of the actor is not part of the data set, we scale the in-

put point cloud data so that it roughly fits the proportions of

our actor. We manually fix correspondences between each

motion capture marker and a mesh vertex. For a test se-

quence with T frames, let Mt be the number of visible mo-

tion capture markers in frame t, let mt,i be the 3D position

of the ith visible marker in frame t and m̃t,i the position of

the corresponding mesh vertex of the reconstructed pose.

Then, the average pose error for a sequence is computed

as

ǭavg ≔
1

∑T
t=1 Mt

T
∑

t=1

Mt
∑

i=1

||mt,i − m̃t,i||2. (7)

The evaluation measure as used in [10] can only be used

to show tendencies in accuracy, since only the average dis-

tances of the markers to corresponding mesh vertices over

all frames of a sequence are regarded, thus possibly averag-

ing away strong local tracking errors. We compare different

pose estimation strategies using the evaluation measure for

all benchmark sequences, see Fig. 5. To this end, we report

Total Prep Loc.Opt E20
I

Lookup Voting

Full res.
16.6 ms 1.2 ms 5.7 ms 6.2 ms 1.2 ms 0.9 ms

100% 7% 34% 37% 7% 5%

Half res.
10.0 ms 1.1 ms 4.6 ms 1.5 ms 1.2 ms 0.9 ms

100% 11% 46% 15% 12% 9%

Table 1. Average running times in milliseconds over all frames of

the benchmark data set.

on how the components of our algorithm perform individ-

ually, without being combined with the hypothesis voting.

Using only local optimization (1st bar) has the problem of

getting stuck in local minima and often loses track. Using

only a database lookup (2nd bar), poses where the end ef-

fectors are not revealed by the first five geodesic extrema

may yield a false lookup result. Thus, in terms of the av-

erage pose error, both methods in isolation do not perform

well on all sequences. The 3rd bar shows the result of the

proposed hybrid strategy, which is significantly more accu-

rate. Also in comparison to [10] (last bar, std. dev. values

were not available), we achieve comparable results for basic

motions and perform significantly better in the more com-

plex sequences 20 to 27. Only for sequence 24 we perform

worse than [10]. Here, the reason is that this sequence con-

tains a 360◦ rotation around the vertical axis, which cannot

be handled by our framework. However, rotations in the

range of ±45◦ can be handled, since we normalize the input

data based on the estimated viewing direction.

Our hypothesis voting decided in 22.5 % of the frames

for the retrieval component, and in 77.5 % for the local op-

timization from the previous frame. As a result, we sig-

nificantly reduced the average pose error of the final pose

estimate in comparison to either method ran individually.

Running time. In Tab. 1, we report the average running

times in milliseconds per frame. In [10], the authors report

a performance of 4 FPS on downsampled input data. By

contrast, with our proposed algorithm, we achieve 60.4 FPS

(16.6 ms per frame) on average on the full resolution input

data, and 100 FPS (10.0 ms per frame) with half of the reso-

lution, which we track with the same accuracy. We also give

the running time of each algorithmic component, namely

the data preparation phase (Sect. 2), the local optimization

component (Sect. 3.1), the feature extraction (Sect. 3.2), the

database lookup (Sect. 3.3), and the voting (Sect. 3.4). For

the full resolution, the running time of local optimization

and the feature extraction are approximately equal. The lat-

ter benefits most from downsampling the data. Note that

because of our efficient algorithmic components no clear

bottleneck is present.

Qualitative evaluation. In Fig. 6, we show example re-

sults of fast and complex motions captured in an uncon-

strained environment. Note that the considered motions
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Figure 5. Left: Average pose error and standard deviation of sequences 27 to 0 in the data set of [10]. Bars left to right: Using only local

optimization, only the database lookup, our results, and values reported by [10] (without std. dev.).

(a) (b) (c) (d)

Figure 6. Snapshots of our results on fast and complex motions. For every motion we show a picture of the actor (not used for tracking),

ToF data overlayed with the reconstructed skeleton, and a rendering of the corresponding mesh.

are much faster and contain more challenging poses than

the ones used in [10]. Each image shows a video frame

of the pose captured from a second video camera not used

for tracking, the depth data from a different angle overlayed

with the estimated skeleton of the pose, and the correspond-

ing mesh. The first column of Fig. 6 (a) shows a very fast

arm rotation motion in a pose where the arms are close to

being outstretched to the camera, as well as a vivid danc-

ing pose. In (b), we show that because of the normalization

step, non-frontal complex poses can also be tracked. Also,

a motion where the arm separates upper and lower body in

the distance image is successfully tracked. In (c), we show

that poses with severe self-occlusion are still a challenge

for pose reconstruction. Nonetheless, the overall pose is re-

liably captured and arm tracking quickly recovers once the

occlusion is resolved. The last column (d) shows a sequence

of fast and complex kicking motions. Here, the algorithm

successfully distinguishes the right and left leg through tem-

poral consistency, which would be difficult by analyzing in-

dividual frames alone. Moreover, the arms partly occlude

the upper body, and still are reflected well in the estimated

pose. In the accompanying video we show the performance

of our prototype implementation also with the Microsoft

Kinect depth sensor.

First experiments show that actors with different body

proportions can be tracked if they are not too different from

our body model. To this end, we scale the input data to

roughly match the proportions the model, see Fig. 7 and the

accompanying video.

Limitations. If the end effectors are not revealed by the

geodesic extrema, our algorithm continues to track using lo-

cal optimization. Then, fast motions lead to unstable poses,

which are resolved as soon as the end effectors are detected

again. Rotations around the vertical axis within a typical

range for interaction (±45◦) are handled by normalizing the

viewing direction. Results become unstable once the actor

leaves that range, since on the one hand, local optimization

does not find meaningful correspondences anymore, and on

the other hand, the database priors can no longer stabilize

the pose estimation. To overcome this limitation, one could

employ a dynamic model for simulating hidden limbs.

5. Conclusions

In this paper, we showed how we obtain robust and ef-

ficient full-body pose estimates from noisy depth image

streams within a combined generative and discriminative

framework. Here, we contributed with an efficient al-

gorithm for computing robust and characteristic features,

enabling real-time performance of the whole framework.

Furthermore, by employing an efficient database lookup

scheme, we make use of the detected features without hav-



Figure 7. In case of slightly different body proportions, we can

simply scaleMI to roughly match our body model.

ing to rely on a priori semantic labels. Finally, by intro-

ducing a robust and efficient sparse Hausdorff distance for

fusing local optimization and a database lookup, we further

increased efficiency with a distance measure that accounts

for the importance of the limbs. In our experiments we go

far beyond results of previous work, both in terms of ef-

ficiency and robustness of the algorithm, as well as com-

plexity of the tracked motions. In future, we plan to inte-

grate a dynamic model for continuing stable pose estimates

for 360◦-rotations and for occluded limbs. Furthermore, the

low computational complexity of our method will allow us

to capture several interacting people.
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