
Supplemental Document for

Computational Design of Metallophone Contact Sounds

Gaurav Bharaj∗ David I.W. Levin† James Tompkin∗ Yun Fei‡ Hanspeter Pfister∗ Wojciech Matusik§ Changxi Zheng‡

∗Harvard Paulson SEAS † Disney Research ‡ Columbia University § MIT CSAIL

Frequency index
0 2 4 6 8 10 12

Fr
eq

ue
nc

y 
sp

ec
tru

m
 (H

z)

10 4

1

2

3

4
1st-order func. FEM sim
3rd-order func. FEM sim
Recorded data

Frequency index
2 4 6 8 10

Pe
rc

en
ta

ge
 e

rr
or

0

20

40

60

80

100

120

Figure 1: A comparison of the accuracy of 1st and 3rd order tetra-
hedral finite elements for modal sound simulation for a shape. On
the left is comparison of 1st , 3rd -order vs recorded data, while on
the right is 1st and 3rd percentage error vs. recorded data.

1 Higher-Order FEM for Fabrication

Accurate simulation is critical for sound design problems. Even a
frequency error of a few percent can impact the perceived quality
of the results. No matter how robust our optimization scheme,
it can be doomed to failure if simulation results do not match
real-world outcomes. Many fabrication algorithms in computer
graphics rely on linear (referring to the shape function order)
tetrahedral finite elements to predict the physical behavior of
design instances (e.g., in Bickel et al. [2010]). However, such
finite elements are well-known to be extremely inaccurate; worse
yet, they do not approach the correct solution value even as the
simulation discretization is refined [Hughes 2012]. In this paper
we rely on 3rd and 4th order finite elements via COMSOL [2005].
COMSOL also performs online remeshing in order to guarantee
solution quality. However, even in the presence of this remeshing
scheme experimental evidence (Figure 1) shows that the results
produced by our algorithm would not be possible without higher-
order finite elements.

2 Fabrication and Materials

With optimized geometry in hand, we turn our attention to fabri-
cation. Most struck idiophones are fabricated in wood or metal,
as plastics produce dull sounds. While wood produces a rich
sound, especially with a resonating chamber as in a marimba, it is
difficult to work with as the material density and stiffness vary be-
tween pieces due to structural differences (e.g., fiber arrangement
and knots).

This leaves metal: Modern CNC tools can accurately and automat-
ically reproduce our geometries. All 2D examples in this paper
were produced by water jetting Aluminum 6063-T83. Our 3D ex-
amples were, geometry permitting, produced using CNC milling
of Aluminum 6063-T83; otherwise, we relied on 3D printing from
a commercial vendor [Sha ]. Table 1, shows the material proper-
ties of all fabrication materials and outlines which process was
used to manufacture each example.

Material Calibration. Correct simulation of sound spectra re-
quires an accurate Young’s Modulus and Poisson’s Ratio. Shape-

Figure 2: 3D printed geometry used for Shapeways material cali-
bration.
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Figure 3: Measurement is conducted inside an isolation booth
(shown open), here provided by an sE SPACE reflection filter.

ways’ metal 3D printing process uses the Stainless-Steel 420
SS + Bronze alloy. Though its material properties are documented
online, we chose to validate the specifications ourselves. Inspired
by Bickel et al. [2009], we optimize for material properties so
that the simulated frequency spectrum matches a recording of a
real material sample (Figure 2).

We solve this inverse problem using our contact sound design
method, with one change. Rather than choosing the design map
parameters, p, to be geometry modifications or perforations, we
choose them to be the Young’s Modulus and Poisson’s Ratio of
the object’s material. Validation was performed by simulating the
sound spectra of an unmeasured object and comparing it to a
real-world recording. Finally, we compared our computed values
against vendor-supplied material parameters, yielding an error of
1%. We found that our optimized material properties produced
more accurate results than those provided by Shapeways, and
therefore we used them for all relevant experiments.

3 Sound Measurement

This quantitative error must be measured, but this is complex: our
optimizations are surrounding-environment-free, but our record-
ing environment is not. One option would be to try to simulate
our real world environment, as per [O’Brien et al. 2002], but this
is complex and error prone. Instead, we try to isolate our samples
from the real world. The goal here is to prevent sound leaving
the piece, reflecting in the real world, and returning distorted to
the microphone (Samson Meteor). As such, we use a reflection
filter as an isolation booth (Fig.3), and surround it with dense
fabrics. Finally, to reliably strike pieces with consistent force while
inside the covered booth, we build a robotic mallet from a striking
solenoid and an Arduino.



Example Metal-Name Fabrication-Method Young’s-Modulus (Pa) Poisson’s-Ratio Density (Kg/m3)

Zoolophone Aluminum 6063-T83 Water-jetting 6.9e10 0.33 2700
City-Scale Aluminum 6063-T83 CNC-Milling 6.9e10 0.33 2700
3D-Cups Stainliess-Steel 420 SS+ Bronze 3D-Printing 1.48e11 0.32 8093

Table 1: Material properties and fabrication methods for all examples.

4 Derivatives of the General Eigenvalues

To aid explanation, we reproduce the key equations (2, 3, 4, and
5) from the main paper. The linear modal analysis equation:

KU= MUS and UT MU= I. (1)

The frequency and amplitude estimation equation:

ωi =
1

2π

Æ

Si,i and ai = | f T ui |, i = 1...N , (2)

The frequency composition objective function equation:

Eω(p) =
∑

k∈K f

wk

ω∗k
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ωk(φ (p))−ω∗k
�2

, (3)

The frequency amplitude objective function equation:

Ea(p) =
∑

k∈Ka

wk

ā1

�

ak(φ (p))− a∗k
�2

, (4)

Quasi-Newton methods such as the SQP require evaluating the
derivative of the objective function, which in our case amounts
to evaluating the derivative of eigenvalues with respect to each
parameter. The derivative of Equation (3) over the j-th parameter
is:
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where λk is the object’s k-th vibration mode (i.e., λk = Sk,k in

Equation (2)). Calculating the derivative
∂ λk(p j )
∂ p j

for the k-th
eigenvalue λk is nontrivial. Based on [de Leeuw 2007], we take
the derivative of Kuk = λkMuk, where uk is the k-th eigenvector
in U corresponding to λk.

We obtain:
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Rearranging Equation (6) gives:
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∂ p j
+ (
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−λk

∂M
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)uk =
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Pre-multiplying both sides by uT
i gives the derivative of eigenval-

ues:
∂ λk

∂ p j
= uT

k (
∂ K

∂ p j
−λk

∂M
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)uk. (8)

Here, the derivatives ∂ K
∂ p j

and ∂M
∂ p j

of mass and stiffness matrices
depend on the specific material models and shape parameteriza-
tions.

For simple examples such as those in §9, we are able to analytically
compute the derivatives of K and M matrices using symbolical
derivatives provided in such commercial packages as Matlab and
Mathematica. For complex geometries or material models, we
simply use finite difference to estimate the derivative values. As
a result, this derivative formula is general to different parameter-
izations while retaining the efficiency.

5 Derivative of Generalized Eigenvectors

If the desired modal vibration amplitudes are a∗, we need to solve
the nonlinear optimization problem to minimize the energy func-
tion (4). The derivative of this energy is related to the derivative
of generalized eigenvectors with respect to the shape parameters
p. In particular, we have:

∂ Ea

∂ p j
= 2
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.

Therefore, core to this computation is the evaluation of uk
∂ p j

. Simi-
lar to optimizing the eigenvalues, we start from Equation (7) and
notice that:

K−λkM= U−T (Λ−λk I)U−1, (9)

and its pseudo inverse (Moore-Penrose inverse) can be expressed
as:

(K−λkM)+ = U(Λ−λk I)+UT . (10)

Next, we notice that:

(K−λkM)+(K−λkM) = I − ukuT
k M, (11)

and also:

(K−λkM)+Muk = (U(Λ−λk I)+)k = 0. (12)

Pre-multiplying the pseudo inverse (K−λkM)+ on both sides of
Equation (7) yields:
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Finally, differentiating uT
k Muk = 1, we have:

uT
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Substituting this expression in Equation (13), we receive:
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Again, this formula involves the derivative of mass and stiffness
matrices with respect to the parameters, as well as the pseudo-
inverse of (K−λkM). They all can be numerically computed or
analytically computed when symbolic derivatives are derivable.



6 Free Vibration with Stands

We detail how our stand creation algorithm chooses support ver-
tices. The method has three steps: determining candidate sup-
porting vertices, sorting vertices based on their potential to induce
damping in desired or undesired frequencies and selecting a con-
crete subset of these vertices to support the object.

Support Locations. We initialize the set of candidate vertices,
Vc , with all object vertices that are in contact with the ground
when our object is in its playable orientation. We define the
playable orientation as the orientation in which the object is
upright and its contact patch is easily accessible. In our case,
this playable orientation is known a priori. Our goal is to select
support vertices, Vs, from Vc such that our object is stable and
has optimal sound quality. We define stability in the traditional
sense: the center of mass of the object and its contact patch are
inside the convex hull of the support vertices. We optimize sound
quality by minimally damping the desired vibrational frequencies
while simultaneously attempting to maximally damp all undesired
frequencies. In the main paper, Figure 5 shows an example of the
optimal placement of support vertices.

A frequency is damped if its modal shape is not allowed to vibrate
as if it were free. This tells us that ideal support vertices have
small maximum displacements in all desired frequencies and large
minimum displacements in all undesired frequencies. In our case,
we find a reasonable set of support vertices using an efficient 1D
search.

Let S =
�

S1, . . . , SM
	

, Sk ∈ RN be the set of object vibration
modes (i.e., eigenvectors of Equation (1)). Here N is the number
of vertices in the tetrahedral simulation mesh. We denote the
displacement of the i th candidate vertex in the kth mode as sk

i ∈
R3. Furthermore let J = {1, . . . , M} be the indices of our user-
defined frequencies. Our goal is to select Vs such that max

�

s j
i

�

is
small and min

�

sl
i

�

is large ∀v i ∈ Vs, ∀ j ∈ J and ∀l 6∈ J .

We build two sorted lists of vertices, F and D. F is the free-
vibration list. We insert all v i ∈ Vc into this list and sort them in

ascending order of max
�

s j
i

s j∗

�

where s j∗ is the maximum vertex

displacement for the j th user-desired mode. Conversely D is the
damping list. Into this list we insert all v i ∈ Vc and sort them in

descending order of min
�

sl
i

sl∗

�

where sl∗ is the maximum vertex

displacement for the l th undesired mode. We now filter F and
D using a scalar threshold t, rejecting candidate vertices in F
with cost above t as well as vertices in D with cost below t. The
remaining vertices form Vs. We perform a 1D binary search for t
such that |Vs| is minimized and our stability criterion are met.
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