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Figure 1: Customized instrument. A set of optimized 2D water jet cut animals and 3D printed cups form a musical scale. Provided with a
user-supplied 3D shape and target sound characteristics of the desired frequencies and their amplitudes, our method optimizes the geometry of
the object to realize the desired sound (see video).

Abstract

Metallophones such as glockenspiels produce sounds in response
to contact. Building these instruments is a complicated process,
limiting their shapes to well-understood designs such as bars.
We automatically optimize the shape of arbitrary 2D and 3D
objects through deformation and perforation to produce sounds
when struck which match user-supplied frequency and amplitude
spectra. This optimization requires navigating a complex energy
landscape, for which we develop Latin Complement Sampling to
both speed up finding minima and provide probabilistic bounds
on landscape exploration. Our method produces instruments
which perform similarly to those that have been professionally-
manufactured, while also expanding the scope of shape and sound
that can be realized, e.g., single object chords. Furthermore, we
can optimize sound spectra to create overtones and to dampen
specific frequencies. Thus our technique allows even novices to
design metallophones with unique sound and appearance.

CR Categories: G.1.6 [Optimization]: Constrained optimiza-
tion H.5.5 [Sound and Music Computing]: Methodologies and
techniques I.3.5 [Computational Geometry and Object Modeling]:
Physically based modeling

Keywords: sound synthesis, shape optimization, computational
fabrication, inverse problem

1 Introduction

Metallophone instruments produce sound directly by vibrating
metal objects with a mallet strike. As such, the tone and timbre
of this sound depend on the object shape and material. Over
millennia, humans have developed design spaces of shapes which
produce desired acoustic responses. However, discovering these
spaces is expensive, time-consuming, and often requires trial
and error. Even in cases where the design space is well known
is additional expertise required. Take the glockenspiel: a set
of suspended metal bars arranged as a keyboard which, when
struck, produce a pure bell-like sound. Despite the fact that
the size and shape of glockenspiel bars is well-studied, careful

drilling of dimples on the underside of the bars is needed to tune
the instrument. We explore whether we can use computation and
digital fabrication to simplify the process of metallophone design.

Acoustic design has been heavily explored in mechanical engi-
neering to avoid structural resonances, e.g., in beams or turbine
blades. Algorithms attempt to optimize either the amplitude or
the frequency response of an object, typically in response to an
applied harmonic load. Such analysis has also been applied to
musical instrument design to study the emission of sound from
horns and the effect of violin bridges on tonal quality.

In contrast, we explore the problem of optimizing a given input
geometry to control both the frequency and the amplitude of
the vibrational response of metal objects to contact. We also
exploit recent advances in automated manufacturing such as 3D
printing, computer numerical control (CNC) milling, and water
jet cutters to manufacture several novel struck metallophones
which we compare to a professionally-manufactured glockenspiel.
Simulation of contact sounds has long interested the graphics
community, as has computational fabrication. We seek to bridge
these two disciplines and explore how much control one can
garner over the contact frequency spectra of complex geometries.

We tackle this problem using a new functional specification method
which automates the design process and controls the acoustic
response of a rigid object by optimizing its geometry. Given
an initial parameterized shape and a sparse target frequency
spectrum, we solve an inverse shape design problem using a
global nonlinear optimization algorithm. During each step of the
design space exploration, the current contact sound spectrum
(computed using high-order finite element analysis) is compared
to the user-desired frequencies and amplitudes. The search ceases
once the two spectra are sufficiently close.

Significant challenges arise when trying to solve such optimiza-
tion problems. The relationship between object geometry and
intrinsic vibration modes is complex, and depends on both geo-
metric features and material properties. As a result, we meet a
constrained optimization problem that is high-dimensional and
non-convex. We derive formulas for computing the derivatives
of vibration modes with respect to the shape parameterization.
These derivative formulas are general, allowing different shape
parameterizations for different applications. Further, we develop
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a new Latin Complement Sampling search algorithm which pro-
vides probabilistic bounds on design landscape coverage. This
allows us to produce metallophones of sufficient quality (0–2%
error) to serve as useful instruments with novel two- and three-
dimensional shapes.

2 Related Work

A few works in graphics are closely related to our own. The
example-based synthesis work of Ren et al. [2013] matches an
object’s sound spectrum to a recorded sound using modal analysis
and a Nelder-Mead optimizer. This transfers recorded sounds to
a virtual object by finding optimal material parameters. Through-
out, the object geometry is given and unchanged.

Umetani et al. [2010] produced the first interactive design tool for
forward metallophone fabrication. Our method solves the inverse
problem non-interactively, affording three advantages: First, our
method can optimize full 3D shapes as opposed to just 2D thin
plates and produces pieces with richer timbres. Second, our
method controls multiple frequencies, not just the fundamental
(lowest) frequency of vibration, and our method controls the
amplitude of each vibrational mode. This helps us create and
dampen overtones (i.e., vibration frequencies higher than the
fundamental, which is an important part of the timbre of the
sound). Third, with no real-time requirement, we use high-order
finite elements for accurate simulation, which reduces the need
for post-fabrication correction.

Concurrently to this work, Hafner et al. [2015] optimized object
thickness to control the lowest vibration frequency of the shape.
They control only the smallest non-zero modal eigenvalue, but
not overtones or vibration amplitude. In a sense, their problem is
a simplified special case of the problem we tackle herein.

Acoustic Inverse Problem. Kac [1966] posed the isospectral
shape question: “can one hear the shape of a drum?”, or, do
there exist two distinct shapes of membranes that resonate at the
same frequencies? While answered “no” by Gordon et al. [1992a;
1992b], this famous question inspired many inverse acoustic
works: given detected sound scattering patterns [Angell et al.
1997; Feijóo et al. 2004] or room echoes [Dokmanić et al. 2013],
reconstruct the shape of the structures that affect sound propa-
gation. Our work is also inspired by Kac’s question, but has a
very different problem formulation: the input specifies not only
frequency values but also amplitudes, and our goal is to find a 3D
shape composed of elastic materials. While not strictly an isospec-
tral problem, these previous works give us insight into the difficul-
ties we may encounter. Specifically, dense spectrum optimization
of any shape would require a continuous space of isospectral
shapes, something implied to be unlikely by Zelditch [2000]. We
sidestep this by performing sparse spectrum control, leaving the
rest of the frequency components uncontrolled but forcing their
amplitudes to zero. This opens up a continuous space of shapes
for our optimization method to efficiently explore.

Contact Sound Simulation. Computer music has modeled per-
cussive instruments such as drums [Fontana and Rocchesso 1998]
and xylophones [Essl and Cook 1999]. We exploit fast physics-
based modal sound simulation from computer animation [van den
Doel and Pai 1998; O’Brien et al. 2002; Raghuvanshi and Lin
2006; James et al. 2006; Chadwick et al. 2009; Zheng and James
2010; Zheng and James 2011; Lloyd et al. 2011; Ren et al. 2013]
and acoustics [Chaigne and Doutaut 1997]. These rely on modal
analysis [De Poli et al. 1991] (§4.1), which is widely used in
computational mechanics. We extend these methods to compute
derivatives of vibration modes from eigenanalysis, with respect
to shape parameters, to use in our new optimization method.

Acoustics and Vibration in Engineering. Recent works have
used computational design to produce musical geometries such
as a saxophone or even speakers [Diegel 2013; Ishiguro and
Poupyrev 2014]. Engineering has explored non-interactive in-
verse shape design for the vibrational modes or frequencies of
an object. Some works [Yoo et al. 2006; Yu et al. 2010] focus
on specific geometries (such as rotating beams or thin plates),
while others are only concerned with the frequency [Choi and
Kim 2006; Yamasaki et al. 2010] or the amplitude [Yu et al. 2013]
of the vibration modes. Other works focus on objects under har-
monic loads [Choi and Kim 2006] and are incompatible with the
contact sound inverse shape design problem.

Some works optimize the geometry and topology of mechanical
structures to control interaction with sound propagation, to re-
duce noise levels [Marburg 2002; Dühring et al. 2008; Barbieri
and Barbieri 2006] or improve sound quality [Bängtsson et al.
2003; Wadbro and Berggren 2006]. These consider sound prop-
agation via the wave equation or the Helmholtz equation. We
focus on sound generation from modal vibrations of solid objects.

Our work is distinguished by its ability to optimize both sound
frequency and amplitude for arbitrary volumetric geometry under
a general external load. In addition, we consider how the object
is supported, and optimize a stand to further suppress unwanted
vibration modes. Finally, none of these works validate their results
with fabricated objects as we do.

Functional Specification. Functional specification algorithms
optimize object properties to meet a specific goal, and so require
simulations to verify object design fitness. Recent methods have
covered elastic deformation force, shape, and motion [Bickel et al.
2010; Skouras et al. 2012; Bickel et al. 2012; Zhu et al. 2012;
Skouras et al. 2013], or appearance-based material distribution
goals for subsurface scattering [Hašan et al. 2010; Dong et al.
2010], caustics [Papas et al. 2011] or reflectivity [Matusik et al.
2009; Weyrich et al. 2009].

Chen et al. [2013] abstract previous methods by goal, parameter
reduction scheme, optimization method, and simulation algo-
rithm. We contribute across the first three areas: sound spectra
have been under explored in this functional specification space;
our method allows different shape parameterizations during op-
timization; and we introduce a new stochastic-continuous opti-
mization scheme specifically for our shape and sound problem.

Material Properties. Recent works find optimal material proper-
ties for deformation behavior under external forces for 3D fabrica-
tion [Bickel et al. 2009] and animation control [Lee and Lin 2012;
Li et al. 2014; Xu et al. 2015]. Contact sounds are also affected by
object material properties, where pleasing and repeatable sound
requires stiffness for vibration. Changing metal properties within
a single piece is difficult, therefore we fix material parameters
and focus on optimizing geometric shapes for sound control.

Non-linear Optimization Methods. Our inverse shape design
problem takes the form of a non-convex optimization. Sam-
pling based schemes are commonly used to solve such problems
[Hansen et al. 2003; Pettersson 2008; Bardenet and Kégl 2010;
Snoek et al. 2012]. However, we propose a new shape optimiza-
tion algorithm based on antithetical sampling [Nagaraj 2014],
called Latin Compliment Sampling, which leverages local search
(akin to Wampler et al. [2009]) and provides probabilistic bounds
on search space coverage. We show that our method outperforms
popular alternatives for complex optimization problems.

Contributions. Over existing works, we contribute:

• An algorithm to optimize the entire sound spectrum of a 3D
object via shape variation. We use a new multi-objective for-
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Figure 2: Overview. Our algorithm for contact sound functional specification requires a shape, design parameters, material parameters and
a frequency spectrum as inputs. We use a new global optimization technique, in conjunction with modal sound synthesis, to optimize shape
parameters. Finally, we fabricate the computed shape (in this case, produced by a waterjet).

mulation to optimize the frequency and amplitude of a struck
linearly elastic object.

• Latin Complement Sampling: a hybrid search method tailored
to non-convex constrained optimization, which provides prob-
abilistic bounds on design landscape coverage.

• Analytical derivatives for sound frequency and sound amplitude
with respect to arbitrary design parameters.

• A method for creating a stand for the fabricated object such
that its sound quality is maximized.

3 Rational and Overview

Motivation. Acoustic design for instruments is concerned with
frequency spectrum sparsity. For melodic instruments, most fre-
quencies have negligible amplitude while a few are loud. These
correspond to the note the instrument is to produce — its funda-
mental frequency — plus its overtones, which together describe
the timbre of the sound. Producing a ‘pure’ note requires the am-
plitude of the fundamental frequency to be high compared to that
of the overtones, while the remainder of the frequencies should be
damped as much as possible. These observations inform the algo-
rithm described below, which performs user-specified frequency
spectrum sparsification.

Pipeline Overview. Our approach needs five user-supplied com-
ponents (Fig. 2, left):

1. A shape parameterization and a design map to specific design
instances — the 3D geometry.

2. A set of design parameters which specify the starting shape.
3. The object material parameters.
4. A contact region and force for striking the object.
5. The desired spectrum when struck, as a set of frequencies and

corresponding amplitudes.

Our methodology assumes that the shape parametrization and
material properties are known a priori. To begin, the user pro-
vides a sparse desired frequency spectrum and defines the contact
region by labelling vertices on the surface of the initial design
instance. Given this, we use isotropic scaling and spectrum sim-
ulation of a strike to match the fundamental frequency of our
object to the desired fundamental frequency in a least squares
sense. Then, for the overtones, we again simulate, and establish
correspondences between the simulated frequency/amplitude val-
ues and their counterparts in the desired spectrum using absolute

frequency difference. These correspondences are used to com-
pute the amplitude and frequency cost functions that measure
spectrum similarity (Fig. 2: Input). Our supplementary video
provides an animation of this initialization process. During opti-
mization we maintain this mapping by re-associating each user
frequency/amplitude with the nearest eigenmode using absolute
frequency and amplitude distance.

Our method produces a design instance that, when fabricated
and struck as specified, produces a vibrational acoustic response
with the desired frequencies and amplitudes. As our simulations
assume vibration in free space — something that is impossible in
the real world — we produce an optimized stand for each object
which avoids damping user-desired frequencies and ensures the
object can vibrate as needed (Fig. 2: Output).

We formulate this shape design task as a computational opti-
mization problem (§4). The optimization variables are the shape
parameters which describe a geometry instance in the design
space. Fabrication limits such as object thickness and fabrication
clearance impose constraints on these parameters. Complicating
matters is the fact that the linear modal sound model (§4.1) im-
poses a highly nonlinear mapping between geometry shape and
contact sound spectrum. This necessitates the development of
a carefully-tailored solver which uses Complement Sampling to
maximize its exploration of the design space. While searching the
design space, we map the contact region from the initial design in-
stance into world space using the shape parametrization, simulate
contact spectra, and compared them to the user-supplied sparse
goal spectrum. Once a design instance with sufficiently low error
is located, the method terminates (Fig. 2: Optimization).

4 Problem Formulation

Formally, our mathematical derivation maps the shape design
parameters to the resulting sound spectrum. To establish this
map, we use the standard linear modal sound model [Shabana
1995; O’Brien et al. 2002; James et al. 2006; Cook et al. 2007].
This choice is motivated by the model’s proven ability to accurately
predict sounds of stiff materials such as metal.

We start by briefly reviewing the linear modal sound model that
predicts sound spectrum from a provided shape (§4.1). Then, we
formulate the core optimization problem (§4.2). This is solved
using higher-order finite elements, for which we justify the need
in the supplemental document.
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4.1 Background on Modal Vibrational Sound

A linear modal sound model is built using a finite element ap-
proximation. Given the 3D geometry of a design instance and its
material parameters, we discretize its volume using a tetrahedral
mesh [Labelle and Shewchuk 2007]. Applying the finite element
method leads to discrete equations of motion which govern the
instance’s dynamic response to external forces:

Md̈ +Dḋ + Kd = f , (1)

where M, K, and D are respectively the mass, stiffness, and damp-
ing matrices depending on the object shape and material; the
vector d ∈ R3n describes the finite element nodal displacement
with n nodes (i.e., n tetrahedral mesh vertices); and the right-
hand-side vector f ∈ R3n stacks the external forces applied on
tetrahedral nodes to excite the vibration.

D affects how fast the sound damps out. For stiff materials such
as metal, the damping D is often small — this is the reason we
hear long ringing sounds from a metallic tuning fork. Since D
has little influence on the vibration frequencies, we assume it to
be zero. Further, since in our formulation, we consider impact
sounds, f is treated as a Dirac delta function which models an
instantaneous impact force applied to a prescribed contact region.

The standard methodology for solving Equation (1) is linear modal
analysis [Shabana 1995]. Provided the mass and stiffness matri-
ces, we first solve a generalized eigenvalue problem:

KU= MUS and UT MU= I. (2)

This computes a modal shape matrix U and a diagonal eigenvalue
matrix S. The former describes displacement patterns of individ-
ual vibration modes while the latter describes the square of the
vibration frequencies. In other words, if we apply a force impulse
f to an object, the resulting sound spectrum will consist of N
individual frequency components, for which the frequency values
ωi and amplitudes ai can be estimated using (Fig. 10):

ωi =
1

2π

Æ

Si,i and ai = | f T ui |, i = 1...N , (3)

where ui is the i-th column vector of U.

Now we can summarize our forward use of the modal sound
model. Given the shape of an instance, and a known fabrica-
tion material, we construct mass and stiffness matrices using a
finite element mesh, and solve the generalized eigenvalue prob-
lem (Equation (2)). Then, using Equation (3), we predict the
frequency spectrum produced when striking the instance at a
user-specified location. This chain of operations establishes a
relationship between the shape of the instance and its produced
sound spectrum. It is this relationship that we exploit to solve the
inverse optimal shape design problem.

4.2 General Contact Sound Optimization Problem

Notation. Let p denote the geometric parameters for shape de-
sign (i.e., the design-space parameters), and φ (p) denote a map
between the design parameters and the derived 3D geometry
(a design instance). The specific choice of φ (p) is application
specific and depends on the type of deformations a user wishes
to allow. For instance, for radially symmetric objects the param-
eters p are the 3D control points of a 1D curve and the φ is a
rotational extrusion. To preserve this flexibility when present-
ing the problem definition here and in our optimization method
(§5), we express φ (p) as a general map. We will explain specific

parameterizations with our implementation details and experi-
ments in §9. Further, we use ωi(φ (p)) and ai(φ (p)) to denote
the frequency and amplitude value of i-th component in the pre-
dicted sound spectrum, because as introduced in §4.1, both ωi
and ai depend on the 3D geometry of the object via a generalized
eigen-decomposition (Equation (3)).

Objective Functions. We wish to control ωi and ai where the
frequency values control the pitch of the sound and the amplitudes
control the loudness of specific frequencies. We consider this
problem as a multi-objective optimization with two subgoals:

• Frequency Composition. We allow the user to select a subset
of all frequency components and control their frequency values.
Let K f denote this subset, so k ∈ K f is an index of a frequency
component that the user wishes to control. For every k ∈ K f ,
the user specifies the desired frequency value ω∗k. Then, we
define an objective function:

Eω(p) =
∑

k∈K f

wk

ω∗k

�

ωk(φ (p))−ω∗k
�2

, (4)

where wk ∈ R is a user-controlled weight assigned to balance
the relative importance among those desired frequencies (e.g.,
the fundamental frequency against any overtones).

• Frequency Amplitudes. As the input to our system includes
an expected contact region, we can compute the volume of
each frequency component using Eq. (3). In practice, the user
specifies a small region on the object surface. When computing
ai in Equation (3), we construct a force vector f that is uni-
formly distributed over the user-specified region. The direction
of the force at each surface vertex is chosen to be normal to
the surface and the summed magnitude of all forces is chosen
to be one. Note that changing the force magnitude scales all
frequency component amplitudes by a constant factor making
the whole sound louder or softer, but not effecting the relative
amplitudes of said components.

We allow the user to select another subset, Ka, of frequency
components, for which the desired frequency amplitudes are
specified. Here Ka and K f can be independent (e.g., to dampen
undesired frequencies). If Ka is identical to K f , then both
the frequency values and amplitudes of those components are
optimized. Let a∗k,∀k ∈ Ka, denote the user-desired frequency
amplitude. Then, the objective function takes the form:

Ea(p) =
∑

k∈Ka

wk

ā1

�

ak(φ (p))− a∗k
�2

, (5)

where wk is again the weights to balance the relative impor-
tance of the amplitudes, and ā1 is the amplitude of the funda-
mental frequency of the initial shape; used to normalize the
frequency amplitudes across multiple components.

Multi-objective Optimization Problem. We combine both func-
tions (4) and (5) into a multi-objective optimization problem and
solve with a lexicographic approach [Branke et al. 2008]. Using
multi-objective optimization allows us to explore the pareto fron-
tier of optimal solutions without resorting to the non-intuitive
weight twiddling associated with weighted sums of energy terms.

p∗
ω
= argmin

p
Eω (p) , (6)

where Eω is defined in Eq. (4). Next, this result is used to initialize
the amplitude control optimization which requires solving:

p∗ = argmin
p

Eα (p) , s.t. ωk(p) =ω
∗
k(p

∗
ω
) ∀k ∈ K f , (7)
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Algorithm 1 Latin Complement Sampling

1: Sample N parameter values P via Latin Hypercube Sampling
2: t ← randomly choose one parameter sample
3: for i← 1, m do . Repeat at most m times
4: Run local SQP starting from the parameter sample t
5: Cache all p values gradients reached by SQP
6: Reject unnecessary p values near local minima
7: Fit a GMM to the cached samples
8: t ← the sample in P with the least GMM PDF value
9: if the GMM PDF of t is less than a threshold then

10: return . optimization terminated
11: end if
12: end for

where Eα is defined in Equation (5). Meanwhile, the shape pa-
rameters p in both optimization problems need to satisfy certain
fabricability constraints such as thickness and clearance limits. If
there are NL limits, we express them generally as:

Ci(p)≥ 0, i = 1 · · ·NL , (8)

and defer the discussion of their specific forms until §9.

Both objective functions (4) and (5) are highly nonlinear because
of the complex dependence of ωk and ak on the 3D shape φ (p).
There is no analytic expression for this dependence as it involves
a high-dimensional generalized eigendecomposition (2). How
can we tackle such an optimization problem numerically?

5 Optimization

To solve the above optimization problems, we propose a new op-
timization algorithm, Latin Complement Sampling (LCS), which
better navigates complex energy landscapes and provides proba-
bilistic bounds on its exploration (§5.2). To facilitate the computa-
tion, we further develop mathematical formulas for the derivatives
ofωi and ai with respect to p (§5.3), so that we can directly com-
pute their values with respect to a variety of parameterizations.
We begin this section with a discussion of the rationale behind
our algorithm before proceeding to the details.

5.1 Method Rationale

Observations. The particular form of our multi-objective cost
function (Eq. (4) & (5)) depends on the specific choice of param-
eterization p and design map φ(p). However, in general, they
share the following properties:

1. The dependence of our cost functions on p is continuous
and differentiable, suggesting that a gradient-based approach
could efficiently find local minima.

2. However, we have both linear and non-linear constraints. For
instance, the constraints in Equation (7) are nonlinear.

3. Thus, the energy landscape is highly non-linear, with many
local minima, cliffs from constraints, and large flat regions
(Fig. 8). This suggests that globally a gradient-based approach
would be easily confused.

These properties inform our choice of optimization scheme (see
§8 for representative, low dimensional, example cost functions).
Specifically, we seek a global optimization scheme that is com-
patible with the general constraints we encounter (Equation (7)
and (8)); yet, we would like to exploit the differentiability of our
energy functions to perform robust search for local minima.
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(c) (d)
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GMM fit to local-points
(illustration)
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Figure 3: Latin Complement Sampling Steps. Top Left: Choose
sample. Top Right: Perform local search. Bottom Left: Fit GMM
to local samples. Bottom Right: Sample from complement of GMM
and repeat. (a) Latin Hypecube Sampling (b) Local Quasi-Newton
Step (c) GMM Fitting (d) GMM Space-Complement.

Previous Strategies. Global nonlinear optimization requires ex-
ploring large portions of the energy landscape, typically relying
on sampling schemes. Algorithms like CMA-ES [Hansen et al.
2003] and Bayesian Optimization [Snoek et al. 2012] are good
examples of this approach. In general, such methods attempt
to fit a function to previous samples and estimate where new
minima may appear. Exploration is then carried out near these
minima [Pettersson 2008; Bardenet and Kégl 2010].

These algorithms have two issues in our context: First, it is difficult
to include hard constraints in their formulations, and second they
do not take advantage of available gradient information. Basin-
CMA [Wampler and Popović 2009] attempts to fix these issues
by performing a local Newton search at each sample point. This
search serves as a projection operator onto the constraint set, as
well as to move samples to local minima in the energy function.
A Gaussian distribution is fit to the projected samples, then new
samples are drawn from this distribution to continue exploring the
energy landscape. However, as with previous works, it still relies
on a sampling scheme which searches near anticipated minima.

In our case, this type of sampling is prone to failure as samples can
fall into the first local minimum they find, leaving the remainder
of the energy landscape unexplored (Fig. 6). Our solution to this
problem is based on the antithetical sampling of Nagaraj [2014]
but we extend the method with a Newton search procedure noting
that samples generated by a Newton search already denote the best
solution locally, thus new samples should be generated far from them.
We call our variant of antithetical sampling complement sampling
because it amounts to fitting a distribution to sets of local samples
and then drawing samples from its complement (Fig. 3). We
do this efficiently using Latin sampling and a sorting procedure
to avoid explicitly computing the compliment of the sampling
function (as in [Nagaraj 2014] for the purpose of analysis).

Method Overview. As outlined in Algorithm 1, our implementa-
tion of complement sampling, which we call Latin Complement
Sampling (LCS), is divided into four phases:

1. Uniform sampling of the parameter space (Line 1 of Algo-
rithm 1).

2. A local gradient-based minimization is performed from the
chosen sample. The resulting locally-optimal parameter vector
and its cost are cached (Line 4-5 of Algorithm 1).

3. Construction of a Gaussian mixture model using the cached
parameter samples and their cost function values.
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4. Selection of the next parameter sample using the above model
(Line 7-8 of Algorithm 1).

The latter three steps are repeated until convergence or until a
user-defined number of iterations is exceeded.

5.2 Latin Complement Sampling

Sampling Parameter Space. Suppose we are given a design-
space parameterized by p ∈ Rn. These parameters need to satisfy
box constraints Li ≤ pi ≤ Ui , i = 1...n (see specific examples in
Section 8), where pi is the i-th component of p.

Let P =
�

p1, p2, ..., pN

	

be samples from the parameter space.
These samples will serve as candidates for performing local
gradient-based optimizations. Therefore, ideally they need to
explore the entire valid parameter space and sample uniformly.
To this end, we construct P using Latin Hypecube Sampling (LHS)
[McKay et al. 2000], a statistical approach known for its ability
to spread sample points evenly across the sampled space.

Local Gradient Step. We begin by selecting a parameter sample
ps ∈ P, and using it as the initial point from which we perform
a local gradient-based search (either on function (6) or (7) de-
pending on the stage of the optimization). These are nonlinear
least-squares problems with nonlinear constraints. Therefore, we
adopt standard sequential quadratic programming (SQP) meth-
ods [Wright and Nocedal 1999].

The SQP method is itself an iterative algorithm, generating a new
set of local samples L= {l1, l2, ..., lM} along a descent direction,
terminating at a local minima. We cache samples l ∈ L along
with their associated cost functions values, filtering points that
are too close together by Euclidean distance (threshold values
range from 10−4 to 10−3). These cached parameter points depict
local regions that we have explored in the parameter space and
we use them to inform our next choice of p s ∈ P.

Complement Search. Throughout this iterative process, we
need to continually choose parameter samples p s ∈ P. Dur-
ing the first iteration, we select the sample randomly (Line 2 of
Algorithm 1). After the first iteration, we choose the sampled
parameters such that they maximize our exploration of the param-
eter space. Concretely, we fit an n-dimensional Gaussian mixture
model (GMM) [Bishop et al. 2006] to the cached parameter sam-
ples from all previous iterations. Conceptually, given a parameter
value p, the resulting GMM indicates the probability that p was
explored by previous gradient-based local navigation. Namely:

prob(p) =
1

(2π)n/2

M
∑

i=1

wi

|Σi |1/2
exp

�

−
1
2
(p −µi)

TΣ−1
i (p −µi)

�

.

Here, the number M of Gaussian components is determined by
a KMeans++ clustering step [Arthur and Vassilvitskii 2007] to
cluster the cached parameter samples; wi , µi and Σi are also
learned from the sampled parameters [Dempster et al. 1977].

Next, we evaluate prob(p) for all p ∈ P and find the parameter
sample p̄ with the minimum GMM probability value. In other
words, p̄ is the sample least likely to have been explored in pre-
vious iterations. Thus, we choose p̄ as the next starting point,
p s, of a local SQP solve, and move on to the next iteration of the
algorithm. A sufficiently large value of prob(p̄) for all members of
P (with a threshold of 0.3 in our examples) indicates that all the
parameter samples have been covered, and so we terminate the
algorithm (Line 9-10 of Alg. 1). The GMM model also provides
us a probabilistic bound for the optimality of the given energy.
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Figure 4: Top left: Shape optimiziation alone (no perforations)
can produce a zoolophone key with desired target frequencies (red
curve) but with limited control of their amplitudes. Bottom left:
Additional perforation optimization allows for control of frequency
amplitudes (blue curve).

5.3 Cost Function Gradients

One piece of our algorithm that remains to be presented is the
computation of cost function gradients with respect to the design-
space parameter p. We could use finite differencing to compute
gradients; however, this would require 2n cost function evalua-
tions where n = |p| is the number of design-space parameters.
Since each cost function evaluation requires solving a general-
ized eigenvalue problem, this approach can be slow. Worse still,
finite differences are known for suffering from inaccuracy when
functions vary rapidly. As illustrated in Figure 8, such rapidly
changing functions are indeed what we encounter.

Using the chain rule we can compute gradients of both the modal
sound frequency and amplitude cost functions, with respect to
p. The most challenging step is the computation of ∂ωi

∂ pi
and ∂ ai

∂ pi
.

We defer the detailed derivations to supplemental material, and
present the final formulas:

∂ωi

∂ p j
=

1

4π
p

Si,i

uT
i

�

∂ K

∂ p j
− Si,i

∂M

∂ p j

�

ui and

∂ ai

∂ p j
= − f T (K− Si,iM)

+
�

∂ K

∂ p j
− Si,i

∂M

∂ p j

�

ui +
1
2

�

uT
i
∂M

∂ p j
ui

�

f T ui ,

where, following the notation in §4.1, K and M are respectively
the stiffness and mass matrices; Si,i is the i-th eigenvalue; and ui
is the i-th column vector of the modal matrix U. (K− Si,iM)+ is
the pseudo-inverse of K− Si,iM.

6 Amplitude Control via Perforation

We observe experimentally that cutting small holes in an object
has a negligible effect on its frequency response but a large effect
on the amplitude of its vibration modes. This observation is
of practical value as, in certain cases, it allows us to remove
the constraints from our amplitude modulation cost function
(Equation (7)), significantly simplifying it. We implement this by
allowing φ (p) to encode the position and edge length of small
square perforations on the object surface. We draw inspiration
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Mode 1 Mode 2
Center 
of mass

Figure 5: Stand creation process. Top: The first two modal
shapes inform where the supports must go (red crosses). Here, Mode
1 is desirable, while Mode 2 is not. Bottom: 3D printed stand with
foam-spikes for support and dampening.

from small indents drilled into glockenspiel keys to damp spurious
vibrations. Because indents are difficult to drill accurately, we
chose to use perforations (which can be cut or included in a 3D
print) instead. Figure 4 shows how perforations can be used to
adjust the amplitude of peaks in an object’s frequency spectrum.

7 Free Vibration with Stands

Our physical model assumes that the object itself is vibrating in
free space, a condition impossible to replicate in the real-world.
Anyone who has ever watched a drummer damp a ringing cymbal
with his hand knows that contact can greatly affect the qualities
of sound due to vibration. To ensure optimal sound production
from our manufactured pieces, we construct optimized stands
to avoid damping as much as possible. This is comparable to
the rubber, string, or felt rail underneath the nodal point of a
glockenspiel bar. Our stand creation methodology has three steps:
determining candidate supporting vertices, sorting vertices based
on their potential to induce damping in desired or undesired
frequencies, and selecting a concrete subset of these vertices to
support the object.

We rely on the observation that a frequency is damped if its modal
shape is not allowed to vibrate as if it were free. This tells us that
ideal support vertices have small maximum displacements in all
desired frequencies and large minimum displacements in all unde-
sired frequencies. In our case, we find a reasonable set of support
vertices using an efficient 1D search over two sorted lists of ver-
tices: one which contains vertices sorted in ascending order of
their normalized maximum displacement in user desired frequen-
cies, and a second which contains vertices sorted in descending
order of their normalized minimum displacement in undesired
frequencies. We choose the smallest subset of vertices from the
beginning of these two lists that make our metallophone statically
stable. Please see our supplemental material for complete details
of the algorithm.

Stand Shape Creation. Once a supporting vertex set has been
chosen, we create geometry for the stand using the CSG union of a
flattened cuboid (the base) and upward pointing thin half-ellipses
centered on each vertex. An example 3D-printed plastic stand is
shown in Figure 5. The supports are covered with foam padding
to avoid dampening from direct contact with the plastic. Stands
are manufactured in the shape of the supported geometry to ease
alignment and so clarify how each object is to be positioned.
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Figure 6: 1D function example comparing LCS to SA and CMA-ES.
Top: Function and found minima. Bottom: Energy vs. function
evaluation count.

8 Validating Latin Complement-Sampling

We compare our LCS algorithm to two methods commonly used in
computer graphics for stochastic optimization and computational
fabrication: Simulated Annealing (SA) [Kirkpatrick et al. 1983]
and Covariance Matrix Adaptation (CMA-ES) [Hansen et al. 2003]
(see [Chen et al. 2013] for a review). To show the benefit of LCS,
we also compare to Random Sampling (RSM) followed by local
Newton’s search from each sample.

First, we examine the behavior of LCS, CMA-ES and Simulated
Annealing on a 1D non-convex cost function given by f (x) =
sin(x) + cos(x2), over the interval −4.5 ≤ x ≤ 4.5 (Fig. 6(a)).
We initialize all algorithms with the same parameter values and
report the number of iterations required for each to converge
to a minimum. Simulated Annealing is able to reach the global
minimum in 700 iterations/function-evaluations while CMA-ES
fails to find the same minimum as its initial samples fall into a
nearby local minimum and are unable to escape. In contrast, LCS
converges to the global minimum in 19 iterations (Fig. 6(b)).

Next, we show the behavior of all four algorithms on two well-
known non-convex benchmark problems from the optimization
literature: the Egg function and the Holder function (Fig. 7).
We ran each algorithm 50 times, with random start points, and
report the mean number of iterations until convergence to the
global minimum. CMA did not converge (DNC) for either test
while Simulated Annealing failed to converge on the Egg Function.
LCS and RSM converged to the global minimum in both cases.
However, LCS requires on average half the iterations of RSM,
showing that LCS explores the parameter space more efficiently.

2D Scaling Frequency Optimization. We explore the perfor-
mance of each algorithm on a sound fabrication test. We perform
a frequency optimization task (Eq. (4)) using an extruded toric
geometry as input (Fig. 8). The goal of the task is to compute
a geometry instance with a fundamental frequency of 261.6 Hz
(Middle C on the piano keyboard). Our design parameters, p,
control scaling in the x and y directions and, are limited to
0.5≤ x , y ≤ 1.5 with simple box constraints (Fig. 8(a)). This pro-
duces a non-linear energy function landscape for this simple case
(Fig. 8(b)). As above, we seed all algorithms with identical start-
ing points. In this case, neither SA nor CMA-ES reach the global
minimum while LCS finds a lower cost solution in fewer iterations.
This is important because each function evaluation requires the
solution of an expensive generalized eigenvalue problem (Tab. 1).

9 Metallophone Results

We use our parameterization-independent acoustic optimization
to design 2D and 3D struck metallophones. For each result, we de-
scribe the input goal, the details of the parameterization used, and
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Figure 7: A comparison of Simulated Annealing (SA), Covariance
Matrix Adaptation (CMA), Random Sampling+ Local Search (RSM),
and Latin Compliment Sampling (LCS) using the well-known Egg
and Holder function benchmark problems. Each algorithm was run
50 times with random start points. We record the mean number of
iterations required to converge to the global minima. DNC denotes
that the algorithm did not converge to the global minimum.

Figure 8: Left: Toric section free to scale in x and y. Right: Energy
over scale space showing non-linearities. The energy function is
defined as |ω− 261.6Hz|.

any extra constraints inserted into the optimization formulation.
Finally, we show images and quantitative error (see supplemen-
tal document for measurement details). We urge the reader to
listen to the accompanying video for qualitative assessment. Ma-
terial parameters for each example are listed in the accompanying
supplemental material.

9.1 The Zoolophone

The Zoolophone is a glockenspiel with the ordinary rectangular
keys replaced with animal shapes.

Input and Output. For each Zoolophone key we specify a funda-
mental frequency (the note of the key) as well as several overtones.
Our optimization seeks to match these notes while reducing the
amplitudes of all other frequencies.

Parametrization for Frequency Optimization. Each Zoolophone
piece is modeled using b-spline curves [Piegl and Tiller 1997], the
control points of which become our p (Fig. 9a-b). We generate

Method Iterations Func. evals Func. cost

Simulated Annealing 250 250 0.034
CMA-ES 34 206 0.040
LCS (finite diff.) 7 40 0.006

Table 1: The number of iterations, function evaluations, and the
function cost of SA, CMA-ES, and LCS on a 2D toric acoustic shape
design problem (Fig. 8), minimizing

�

�ω∗1 − 261.6Hz
�

�.

3D geometry by extruding these 2D curves in z. If the number
of control points in the initial shape is expressive, then we use
a free-form-deformation grid to create a reduced space of shape
parameters to make our optimization more efficient (Fig. 9c-d).

Parametrization for Amplitude Optimization. We perforate the
object to control the amplitude of the frequency spectrum (§6).
This is accomplished using standard CSG operations (Fig. 9(e)),
with each perforation parameterized by location and radius. As
mentioned previously, perforating an object allows us to simplify
the amplitude modulation cost function. It also avoids excessive
deformation of the geometry for the sake of amplitude control.

Fabricated Result. We create one
key for each note in the C Major
scale, namely the notes C, D, E, F,
G, A, B, and C. Figure 9 shows the final shapes for each key, along
with the user-defined frequency goals, the initial frequency spec-
tra, the spectra computed using only linear scaling, the result of
our method, and the spectra from a professionally-manufactured
glockenspiel. To aid visual comparison, we overlay raw frequency
plots with bar charts that highlight the seven largest peaks in
the frequency spectra. Furthermore, Table 2 shows all frequency
errors for these examples. In terms of fundamental frequency
error, our algorithm outperforms isotropic scaling in all but one
case for which we are within 0.2Hz. For overtones, we always
outperform isotropic scaling, reducing error by ≈ 4× to ≈ 70×
depending on the example. The main source of our error is due
to fabrication: the waterjet used to manufacture the Zoolophone
could chip pieces and had difficulty following non-smooth paths
in the optimized geometry. A better understanding of the con-
straints of this fabrication method would improve our ability to
constrain our optimization, thus improving our results.

We also created several special zoolophone keys. The first two
are elephants which demonstrated the ability of our algorithm to
trade accuracy for shape preservation (Fig. 1: good shape and
satisfactory acoustics; Fig. 9: more deformed shape (‘anteater’)
but with better acoustics). See our supplemental video for a
comparison. The next special key is a larger giraffe optimized
to have a fundamental frequency at C4. Initial, isotropic scaling
of the giraffe allowed us to match the fundamental frequency,
but left a dense frequency spectrum (Fig. 12, bottom row). Our
optimization scheme was able to significantly suppress unwanted
frequencies, leading to a cleaner sound (Fig. 12, top row). Finally
we demonstrate the ability of our method to control overtones,
with a giraffe key that produces a chord when struck. This key has
frequency peaks of equal amplitude at C, E, and G. We believe this
is the first multi-tonal glockenspiel key ever produced (Fig. 4).

9.2 Tea for Three

Input and Output. Our method is not limited to producing 2D
geometries. We perform frequency and amplitude modulation for
bell-like cups, each optimized to produce a specific note, one of
C, F or A. The cups were 3D printed by an online service.

8
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Figure 9: The Zoolophone. Top: Frequency and amplitude parametrization: (a) Extrusion operation. (b) FFD parameterization (control
points) and deformation. (c) Hole difference operation. (d) Amplitude-modulation parameterization. Middle: Shapes before and after
optimization. The two ‘after’ elephants demonstrate a trade-off: (top) good shape with satisfactory acoustics, or (bottom) more deformed
shape (‘anteater’) but with better acoustics. Bottom: Frequency response for each key in the zoolophone. We show four spectra for each
key. The spectrum of the initial shape (dark blue), the spectrum after isotropic scaling to match the fundamental (light blue), the result
of our method (green), and the spectrum of a professionally-manufactured glockenspiel (grey). The five largest frequency peaks for each
spectrum are denoted by vertical bars. Goal notes are shown as dashed red lines along the ground plane and denoted using scientific pitch
notation. Note that our goal is not to match the overtones of the professional key, only the fundamental frequency, and so please consider any
match/non-match here to be a coincidence. The reader is encouraged to zoom in to examine each plot.
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Figure 10: Tea cups example. Top: Shape parameterization as a
surface of revolution (a). Amplitude-modulation perforation (b).
Bottom: Frequency spectra for the initial cup shape (simulated) as
well as the three manufactured cups. The two goal frequencies are
shown in the top right of each plot in scientific pitch notation.

Parametrization for Frequency Optimization. We use surfaces
of revolution to create our cup shapes (Fig. 10, first row). Here,
the shape parameters for frequency optimization are the control
points of cubic b-spline curves. These control points determine
the shape change of the cup, as shown by green dots in Figure 10.
Augmenting the parameterization with a wall thickness parame-
ters gives us printable 3D geometry.

Parametrization for Amplitude Optimization. As described in §6,
we first decide where generally we would like to hit the object
to produce the desired frequency. Figure 10(a) shows vertices
where the force is applied. Similar to what is described in §9.1,
in 3D we achieve amplitude modulation by adding holes to the
cup geometry. To this end, we perform a difference operation
between the cup geometry and thin pipe-like cuboids (Figs. 10(b)
& 10(c)). Alternatively, we could add holes using cylinders; how-
ever, difference operation with cylinders leads to unnecessary
high tetrahedral count, with no added advantage for modulation.
Finally, the parameters for energy described by Equation (5) are
the width, thickness, angle-of-rotation, and height of the cuboids.
All parameters had box constraints.

Fabricated Result. Using the same initial parameter values, we
optimize for three different frequencies: C 7, 8; F 7, 8; A 7, 8
(Fig. 1). As with all 2D pieces, we optimize for and fabricate
stands for the cups. However, our C cup has no active vibration
modes on its bottom surface and so does not require a stand. Of
all our results, the cups have the most fabrication errors. Two of
the returned cups had significantly different densities than what
was specified by the manufacturer. Despite this, the final products
have average error ≈ 1.5%.

9.3 Cityscape

Input and Output. Thus far, we have optimized 2D and 3D
object frequency responses for a single contact location. Next, we
attempt the more challenging problem of a piece which produces
two different notes when struck in two different locations.
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Figure 11: Cityscape. (a) Initial design space and its parameter-
ization. The location-arrows represent the contact-force locations
and directions. (b) Fabricated result.
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Figure 12: We optimize a larger giraffe with a lower fundamental
frequency (C4). Top: Isotropic scaling yields a dense spectrum of
higher frequencies. Here, the amplitude of the fundamental fre-
quency is diminished. Bottom: Our algorithm not only matches the
fundamental frequency correctly at 261 Hz, but suppresses the am-
plitude of the remainder of the frequencies. The reader is encouraged
to zoom in to examine both plots.

Parametrization for Frequency Optimization. Our design
space is a grid of vertical cylinders. The design parameters, p,
are the heights of the sixteen cylinders and the thickness of the
base (Fig. 11(a)). The vertical distance between the top of the
cylinder and the contact point remains constant.

Optimization Formulation. We must modify our standard cost
functions (Eqs. (4) and (5)) to solve this multi-impact problem.
Given the two desired frequencies in the spectrum and their re-
spective impact locations (l1, l2), we solve the modified frequency
optimization problem:

E(p) = Eω(p) +λ1α2 (I1) +λ2α1 (I2) , (9)

where αi(I j) i, j ∈ {1,2} is the amplitude of the i th user defined
frequency at the j th impact location, and λ1 and λ2 are user-
defined weights. Our aim to have only one frequency be heard at
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Shape Note Fundamental Overtone 1 Overtone 2
Initial Iso-scale Full Professional Initial Iso-scale Full Initial Iso-scale Full

Giraffe C 7, 8, 9 32.20 0.81 0.04 0.51 2.00 7.38 0.31 7.70 9.50 1.85
Whale D 7, 8, 9 30.78 0.37 0.56 0.37 5.82 13.61 0.54 3.30 5.86 0.32
Elephant E 7, 8, 9 32.84 0.87 0.26 0.22 15.37 17.63 3.29 8.80 1.56 0.60
Rhino F 7, 8, 9 45.27 0.18 0.18 0.18 1.92 9.25 0.00 4.53 0.96 0.00
Lion G 7, 8, 9 18.46 0.35 0 0.44 5.10 7.68 2.70 4.73 17.54 1.19
Tortoise A 7, 8, 9 66.96 0.62 0.02 0.02 6.25 12.52 0.17 7.66 13.43 0.02
Bird B 7, 8, 9 32.82 1.08 0.40 0.68 0.87 14.16 1.02 1.79 4.43 0.71
Giraffe C 8, 9, 10 33.77 0.57 0.21 0.57 7.76 26.24 0.65 13.16 18.43 0.49

Table 2: Frequency percent errors for fabricated zoolophone pieces: for the initial shape, our preliminary isotropic scaling to match just the
fundamental frequency, and our full non-linear optimization. For the fundamental frequency, we include a comparison to the professional
glockenspiel; however, beyond this, the overtones are not intended to match.

Shape Name Notes Freq. dims Ampl. dims
Cup F 7, 8 11 12
Cup A 7, 8 11 12
Cup C 7, 8 11 12
Cityscape E 8 & B 8 17 -
Giraffe C 7, 8, 9 18 12
Whale D 7, 8, 9 18 12
Elephant E 7, 8, 9 18 12
Rhino F 7, 8, 9 18 12
Lion G 7, 8, 9 18 12
Tortoise A 7, 8, 9 18 12
Bird B 7, 8, 9 18 12
Giraffe C 8, 9, 10 18 12
Giraffe C 4 18 12
Giraffe C 6, E 6, G 6 18 12
Giraffe C 7, E 7, G 7 18 12

Table 3: Dimensionality of the optimized parameter space for fre-
quency and amplitude stages for each shape.
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Figure 13: We attempt to optimize a standard triangle, which
typically has a very dense spectrograph, to produce note C3 with
overtones of C4 and C5. While some peaks are matched, even drastic
shape change (left) cannot dampen all other peaks in frequency.

a time is equivalent to ensuring that the mode shape associated
with each frequency has no displacement at the alternate impact
point. It is this relationship that Equation 9 encodes.

Fabricated Result. Figure 11(b) shows the optimized fabricated
result. We optimized hit-location 1 (l1) for �E8 (5274 Hz) and
hit-location 2 (l2) for �B8 (7902.1 Hz). The recorded average
percentage error was 0.2% for the two frequencies.

10 Conclusion

We have presented a functional specification algorithm for acous-
tic shape design. We have applied our new method to produce a
variety of 2D and 3D metallic objects with user-defined impact

frequency spectra. Using our techniques, new aesthetic-acoustic
design is available for musicians, artists, and engineers to explore.
If we consider that in the future our approaches could be applied
to problems such as creating dampened operating mechanisms,
then our work holds promise as a tool to help solve a broader
class of sound control problems.

Limitations and Future Work. The main limitation of our tech-
nique is that the achievable control for objects with dense fre-
quency spectra is limited. The C4 giraffe (Fig. 12) shows that our
algorithm can perform simple frequency and amplitude control
under these conditions. However, it was impossible to optimize
for more than one frequency given the dimensionality of our shape
parameterization. A similar failure case is shown in Figure 13,
where we are unable to achieve control over the dense spectrum
of a triangle chime. As a rule of thumb, denser spectrum control
appears to come at the expense of geometry control, leading to
undesirable results when our parameterizations are to restrictive.
This restriction extends to overtone control: we were able to
produce single key chords for C6E6G6 and C7E7G7, but not for
C5E5G5 due to the increased spectrum density.

In some cases such as our elephant example, our algorithm could
produce an acceptable acoustic result at the expense of unaccept-
able object geometry distortion. In these cases, adding additional
user-defined shape constraints could help, though it is unclear
how this would effect the fitted spectrum.

In general, choosing an appropriate parameterization is crucial
for algorithm success since the parameterized geometry must be
able to replicate the user-supplied frequency spectrum. Smart
parameterization refinement algorithms, as well as fast methods
for detecting “impossible” goals, are important open research
questions.

Finally, our output is at the mercy of fabrication accuracy. Manu-
facturing our tea cups required multiple attempts due to incon-
sistencies in the 3D printing process which led to inconsistent
material properties. Accounting for such variance during opti-
mization is an important next step for fabrication algorithms.
Further, while our method is rooted in the mechanical engineer-
ing approach of controlling specific object vibration modes, more
perceptual metrics might allow us to avoid the mode matching
cost functions and simplify the implementation.
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